4,288 research outputs found

    Quantifying Genuine Multipartite Correlations and their Pattern Complexity

    Get PDF
    We propose an information-theoretic framework to quantify multipartite correlations in classical and quantum systems, answering questions such as what is the amount of seven-partite correlations in a given state of ten particles? We identify measures of genuine multipartite correlations, i.e., statistical dependencies that cannot be ascribed to bipartite correlations, satisfying a set of desirable properties. Inspired by ideas developed in complexity science, we then introduce the concept of weaving to classify states that display different correlation patterns, but cannot be distinguished by correlation measures. The weaving of a state is defined as the weighted sum of correlations of every order. Weaving measures are good descriptors of the complexity of correlation structures in multipartite systems

    New results for hadronic collisions in the framework of the Parton-Based Gribov-Regge Theory

    Get PDF
    We recently proposed a new approach to high energy nuclear scattering, which treats hadronic collisions in a sophisticated way. Demanding theoretical consistency as a minimal requirement for a realistic model, we provide a solution for the energy conservation, screening problems and identical elementary interactions, the so-called "Parton-Based Gribov-Regge Theory" including enhanced diagrams. We can now present some of our results for SPS and RHIC energies.Comment: 4 pages, 3 figures, To appear in the proceedings of Quark Matter 2002 (QM 2002), Nantes, France, 18-24 Jul 200

    Drug delivery applications of three-dimensional printed (3DP) mesoporous scaffolds

    Get PDF
    Mesoporous materials are structures characterized by a well-ordered large pore system with uniform porous dimensions ranging between 2 and 50 nm. Typical samples are zeolite, carbon molecular sieves, porous metal oxides, organic and inorganic porous hybrid and pillared materials, silica clathrate and clathrate hydrates compounds. Improvement in biochemistry and materials science led to the design and implementation of different types of porous materials ranging from rigid to soft two-dimensional (2D) and three-dimensional (3D) skeletons. The present review focuses on the use of three-dimensional printed (3DP) mesoporous scaffolds suitable for a wide range of drug delivery applications, due to their intrinsic high surface area and high pore volume. In the first part, the importance of the porosity of materials employed for drug delivery application was discussed focusing on mesoporous materials. At the end of the introduction, hard and soft templating synthesis for the realization of ordered 2D/3D mesostructured porous materials were described. In the second part, 3DP fabrication techniques, including fused deposition modelling, material jetting as inkjet printing, electron beam melting, selective laser sintering, stereolithography and digital light processing, electrospinning, and two-photon polymerization were described. In the last section, through recent bibliographic research, a wide number of 3D printed mesoporous materials, for in vitro and in vivo drug delivery applications, most of which relate to bone cells and tissues, were presented and summarized in a table in which all the technical and bibliographical details were reported. This review highlights, to a very cross-sectional audience, how the interdisciplinarity of certain branches of knowledge, as those of materials science and nano-microfabrication are, represent a growing valuable aid in the advanced forum for the science and technology of pharmaceutics and biopharmaceutics

    Strange Particle Production in p+p, p+Pb and Pb+Pb Interactions from NA49

    Get PDF
    Recent NA49 results on Lambda, Antilambda, Xi- and Antixi+ production in minimum bias p+p and centrality selected p+Pb collisions at 158 GeV/c, and the results on Lambda, Antilambda, K+ and K- production in central Pb+Pb collisions at 40, 80 and 158 A GeV are discussed and compared with other available data. By comparing the energy dependence of Lambda and Antilambda production at mid-rapidity a striking similarity is observed between p+p and A+A data. This is also seen in the energy dependence of the Lambda/pi ratio. K+/pi at mid-rapidity is affected in a similar way, due to the associated production of K+ together with Lambda particles. The observed yields increase faster than the number of wounded nucleons when comparing p+Pb to p+p. As already observed in A+A collisions, the increase is larger for multistrange than for strange baryons and for baryons than for anti-baryons.Comment: 8 pages, 10 figures, To appear in proceedings of Strange Quark in Matter 2001-A Flavourspace Odyssey, Frankfurt am Main, Germany, 24-29. Sept. 200

    Radiation Hydrodynamical Instabilities in Cosmological and Galactic Ionization Fronts

    Full text link
    Ionization fronts, the sharp radiation fronts behind which H/He ionizing photons from massive stars and galaxies propagate through space, were ubiquitous in the universe from its earliest times. The cosmic dark ages ended with the formation of the first primeval stars and galaxies a few hundred Myr after the Big Bang. Numerical simulations suggest that stars in this era were very massive, 25 - 500 solar masses, with H II regions of up to 30,000 light-years in diameter. We present three-dimensional radiation hydrodynamical calculations that reveal that the I-fronts of the first stars and galaxies were prone to violent instabilities, enhancing the escape of UV photons into the early intergalactic medium (IGM) and forming clumpy media in which supernovae later exploded. The enrichment of such clumps with metals by the first supernovae may have led to the prompt formation of a second generation of low-mass stars, profoundly transforming the nature of the first protogalaxies. Cosmological radiation hydrodynamics is unique because ionizing photons coupled strongly to both gas flows and primordial chemistry at early epochs, introducing a hierarchy of disparate characteristic timescales whose relative magnitudes can vary greatly throughout a given calculation. We describe the adaptive multistep integration scheme we have developed for the self-consistent transport of both cosmological and galactic ionization fronts.Comment: 6 pages, 4 figures, accepted for proceedings of HEDLA2010, Caltech, March 15 - 18, 201

    Cosmological Baryon Sound Waves Coupled with the Primeval Radiation

    Get PDF
    The fluid equations for the baryon-electron system in an expanding universe are derived from the Boltzmann equation. The effect of the Compton interaction is taken into account properly in order to evaluate the photon-electron collisional term. As an application, the acoustic motions of the baryon-electron system after recombination are investigated. The effective adiabatic index Îł\gamma is computed for sound waves of various wavelengths, assuming the perturbation amplitude is small. The oscillations are found to be dumped when Îł\gamma changes from between 1 (for an isothermal process) to 5/3 (for an adiabatic process).Comment: 20 pages, Revtex, Accepted for publication in Phys. Rev.
    • …
    corecore